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This Paper considers the problem of the choice of the control forces by 
means of which one can ensure either the realization of the law of motion 
in the phase space (or subspace) of the nonlinear sampled data system or 
the passage of the nonlinear sampled data system through predetermined 
states at given moments of time. 

This paper concerns aspects of the theory of dynamic programming [I] 
related to the realization of the chosen strategy of controlling the 
motion. 

For non1 inear cant inuous systems, the similar problem was considered 

by the author [Zl in previous work. 

1. The motion of a nonlinear sampled data system can be described by 
the following system of nonlinear difference equations: 

f-Iere yk are the generalized coordinates of the system, xj(t) are the 

given external forces, q-(t) 
t: 

are the additional external forces for which 

the law of variation wit respect to time nust be chosen, such that the, 
prescribed motion will take place. By f.k(7’> are denoted polynomials in 
T, the coefficients of which are given f unctions of time, where T repre- 
sents the lead operator, defined by the relation 

T’“yk = yk (t + pz) (1.2) 
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in which T is some constant quantity. The highest degree 7' of the poly- 
nomials fjk(73 fj = 1, . . . . n) for a given k is represented by mk. 

The functions yj (j = 1 , . . . . n) on the right-hand side of Equation 
(1.1) appear as some nonlinear functions of their arguments. !!'e shall 
assume that these functions are continuous with respect to all their 
arguments in a closed domain, and satisfy in that domain Lipschitz con- 
ditions relative to the arguments 

yl, TY,, . . . 3 T--lylr . , . , yn, Ty,, . . . , T’+-lYn 

Let us note that the controlled systems, for which the presence of 
forces appearing as functions of the error is specified, are also de- 
scribed by Equation (1.1). The specified forces are considered as left- 
hand sides of Equations (l.l), the nonlinear functions W: and the given 
external forces 'xj(t). 

‘I 

Equations (1.1) can be expressed [3] in the form 

7's" + i auk (t) zk = xv (t) + Qv (t) + u’, (zl, . . . , G: $1 (v=i,.. 
k=l 

Here 

r) (1.3) 

0.4) 

(1.5) 

cl = ml, u2 = ml+ m2,. . . ,u, = r (1.7) 

and the functions X,(t), Q(t), Y, (zr, . . . . zr, t) for which P # ol 
(I = 1, . ..) n) are identically equal to zero. 

In the Expressions (1.6) we have designated by A*(t) the determinant 

of the coefficients bjk(t), of the T"kykit) in the 
Equations (1.1) 

A* (4 = I bjl, (0 / 

where it has been assumed that this determinant is 

left-hand sides of 

(4.6) 

not identically equal 
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to zero. The minors of the elements b, in the determinants (1.8) are de- 
noted by Bkj. 

The system of scalar differences (1.3) can be replaced by the matrix 
difference equation 

z (t + i) + a (t> z (t) = X(t) + 0 (t) + ‘P (21 (t)t - - - % zr (t), t) (1-Q) 

where 

Let us denote by 0(t) the fundamental matrix for the homogeneous 

matrix equation 

2 (t + z) + a (t) 2 (t) = 0 (1.11) 

The columns of the matrix e(t) will be linearly independent of the 

particular solutions of Equation (1.11). Therefore the matrix B(t) 
satisfies the relation 

e (t + z) + a (t) 8 (t) = 0 (1.12) 

A solution is sought for the nonlinear matrix equation (1.9) of the 

form 

2 (4 = 0 0) x (1.13) 

x(t) a matrix upon given Sub- 

Expression into (1.9), get 

+ x + ~1 + a (0 0 (4 x (4 = X Wf Q 0) +Y (21 (t),..., 2, (0, t) 

or 

Taking relations (1.12) into account, we get 

6 (2 + 4 Ax (0 = X (0 + Q (t) + Y (21 (t), . . . , z, (4, t> 

(1.14) 

from where it follows, that 
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where Ax (1) is the first difference of the function x(t), and T’It) re- 
presents the inverse matrix of the matrix O(t). From (1.15) it follows 

[Zj that 

+ !I! (zl (t - it), . . . , z&- iz), t - i~)l + A (i) (6 = [$-I, (i.16) 

where 6 represents the fm~&on t/7 and Afb) is a periodic function of 

period T depending on the given conditions. Repiacing the index of sum- 
mation i by the relation i = ti- j + 1, the Expression (1.16) is trsns- 
formed tu the form 

Let us now denote by e*(t) = [I t$tl 1) the given matrix, which is de- 

termined in the time interval 0 C t 4: T by the law of variation of the 
unknown functions .zV<t) (v = 1, .._, r)’ in this {initial) intervaf. 

In the intervaf of time 0 < t < 7, the first component on the right- 

hand side of relation (2.18) becomes zero. In order that the second com- 
ponent on the right-hand side of (1.H) coincide, with z*(t) in that 
interval of time, it is necessary CO choose as a periodic function .1(t) 

the follckng function 

A 0) 

With such a choice of 

= 8-L (t - $T) 2” ft - 62) (I. 19) 

the function A(t), relation (1.13) becomes 
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2 (t) = e (t) 9-l (t - 62) z* (t - 6T) + 

+i e(t) e-l(t--62+jz)iX(t-~62+jz-~)+Q(t-~62+jz-~)+ 
j=l 

+ Y (21 (t - 62 + jz - z), . . . ,z,(t-fh$jT-T),L - 62 +jz-T)l (1.20) 

Introducing the function 

N (t, jr) = 8 (t) e-1 (t - 62 + Jo) (1.21) 

which represents the weighting function for the matrix difference equa- 

tion (1.11)) relation (1.20) can be presented as 

8 

2 (1) = N (t, 0) z* (t - eq + 2 N (t, jz) x (t - 62 + jr - z) + 
j=l 

8 

+ 2 iv 0, iz) Q (t - 62 + ir - z) + i N (t, iz) x (1.22) 
j=l j=l 

xY(z,(t-_~fjZ--),..., z,(t--th+jz-T), t-ch+ja-T) 

Tie matrix relation (1.22) is equivalent to the matrix difference 

equation (1.9)) together with the given law of variation of the unknown 

functions z,(t) (v = 1, . . . . r) in the initial interval of time 0 < t < 5. 

Zelation (1.22) is analogous to the matrix integral equation in tile con- 

tinuous analysis. 

Since the functions Xu(t), $,(t), ‘Y,(zl(t), . . . . t,(t), t) for which 

u # aI (I = 1, . . . . n) are identically equal to zero, the system of 

scalar relations equivalent to the matrix equation (1.22) appears as 

2” (t) = i] N”k (t, 0) 

8 

zk*(t - 62) + i 2 xai (t, iz) x 

k=l i=_l j=l 

x [x0& - 6~ + iz - t) + Qmi (t - 62 + jr - 41 +i i hi (6 in) x 
izl jzl 

x \Y,i(zl(t--6t+iz-~),..., 2, (t - 62 + iz - z), t - 62 + jt - t) 

@=I, . ..) r) (1.23) 

Let, us now introduce the notations 
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kl 
(1.24) 

(v=i, . . . , r: z=1, . . . , n) 

g, (t) = i: Nvk (h 0) 
n a 

zk* (t - 62) + 2 2 W”Z (t, jz) Xl (t - 62 + iT - T) 
k=l t=l j=l 

(v=1, . . . . r) (1.251 

Substituting Expressions (1.6) for X0., Qo., ‘f’o. into (1.23), it can 
1 I 1 

be expressed as 

n B n 8 

2, (t) = g, (1) + 2 2 W”, (t, iv) qt (t - 62 + iz - 7) + 2 z WV2 (t, izlx 

I=1 jzl I=1 j=l 

x $1 (21 0 -+h+j-c--T),..., z, (t - 62 + jz - z), t - *z + iz - z) 

(Y =.I, . . . , r) (1.26) 

Let us now set the problem of bringing the system at the instant 

t, = jlT (1.27) 

which is assumed to be a multiple of T, to some given point z 

(cl = 1, . . . . m) of the m-dimensional phase subspace (z 
pP 

= r 

4’ ***’ k 
,? 

Let the number of additional external forces at our disposal also be 
equal to m and let these forces be q $)’ ..*, q, (t). 

I 

To solve this problem it is necessary to select some additional ex- 
ternal forces qsi(t) (i = 1, . . . . m) such that the conditions 

ZPlr (tJ = rpp 
@=I, . . . , m) (1.28) 

are satisfied. 

& taking the functions qsi(t) (i = 1, . . . , m) as step functions, the 

values of which are unchanged on the interval (0, t,) 

(0 < t < t1) (i=1, . . . , m) (1.29) 

it will be found that the phase coordinates z,(t) (v = 1, . . . . r) on the 
interval (0, t,) and the unknown values q,.(O) (i = 1, . . . , m) will be 

z 
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determined by the following system of equations: 

8 

Z" (t) = g, (t) + OF,, (') qei (0) + ~ ~ W'Z (', i') X 
i=l l=ljml 

x $2 h 0 - 4T + jz - z),..., zr (t - fh + iz - q, t - @T + iz - 9 

(o<t<ir@ (Y=1, ..', r) 
(1.30) 

Here FVSi(tf represents the known functions 

(v-=1, . . . . r; i=l, . . . ,m) (1.31) 

Equations (1.30) can be transformed in the following manner. From the 

second group of rSquations (1.30 it appears that 

(1.32) 

where 

and A, m) is the minor of the elements P ’ 

the de &ninant i 

s .(j17) (5, i = 1, . . . . 

(1.33). Introducing the notation 
Pcsi In 

k,i (in')= & Rs~ VI') U =I, . . . . m) (1.35) 
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the Expression (1.32) can be put in the form 

Substituting the Fqressians f1.311 found for 2,i(@I into the first 

group of Equations (1.301, the following system of nonlinear relations, 
relative to the unknown functions zg(tI fj = I, ,..) r) is obtained: 

where 

Ye notice that, as in [Z] , the number af equations constituting the 

system ( 1.38) d ecreases if the nonlinear functions Y,(l = 1, . . . , n) do 
not depend on some phase coordinates z . If, for instance, in the non- 
linear function Y,(Z = 1, . . . . n) the& is only one phase coordinate zk 

$1 = 9t (% (0, q {r = 1, * . * , n) (1.40) 

then, in agreement with (1.381, it will be necessary to solve the foffow- 
ing nonlinear equation with respect to the unknown function zk(t)Z 

&l i=l - jars1 . 

n a 

+rj~~“l(t,jt)~r(%~(t-~T+jt-T),t--T+jT-r) V<f<ilQ 
1=1 j=l 

The remaining phase coordinates tp (p = 1, . . . . k - 1, k + I, . ..$ ~-1 

wilt be expressed as finite sums 
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+ 2 2 IV,, (t, jz) $,I (q (t - 62 + jz - z), t - 62 + jz - z) P<t<ilr) 
I=1 j=1 

The additional 

agreement with (1 

n j, 

3 
a. Let us now 

external forces q, ,(t) (i = 1, . . . , m) will then, in 
1 

37), have the following form: 

qsi (0 = qsi (0) = k,, U) - (1.43) 

0) $ (zk (jr - r), ir - z) (O< t <ilQ (i =I, . ..) m) 

consider the case when the number of additional ex- 

ternal forces qSi(t) which can b e realized in the controlled system is 

smaller than the order of the phase subspace to a given point of which 

the system has to be brought. 

Let us assume that there is only one additional external force q,(t) 

available, the law of variation with time of which has to be chosen such 

that conditions (1.29) are satisfied, where in agreement with (1.2.7) 

t1 
= jl-r, and j, is some integer. 

In order to solve the problem, the interval of time (0, jl?) will be 

divided into IR equal or unequal subintervals (0, yr~), (~~7, yap), . . . . 

(Y,_ 1~, jlT), where yl, . . . , y,_ 1 are sorne integers. Let us take q,(t) 

as a step function and represent its values on each of these subintervals 

by T&O), q,(ylT), . . . , q,(yn_ lT), respectively. Equations (1.261, sle- 

ter!ilining the law of variation of the system, now take the fori~: 

m-1 *I 8 

2, (t) = g, (4 + 2 4, (rir) 1 (t_- ri4 2 WV, (h i4 + i 2 WdW)x 

i=O j=ui+l i=lj=l 

x $ (zl (t - 62 + jz - .t), . . . . z,(t--fhfjz-z), t-fh+jz--z) 

(0 < t < id (y = 1, . . , r) (2.1) 

where 

70 = 0, rm = il (2.2) 

Ui = @ + (Tifl- *) I t6 - 7itl) (i = 0, 1, , m - 1) (2.3) 
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0 
l(3) ={ 1 

for 3<0 

for f>O (2.4) 

conditions (1.28) take on the fOml 

m-1 

TPp - gpp (iA = 2 vpps (Tit) Q, (Ti4 + 
i=o (2.5) 

-+x 2 w,,*(~,z,~z)g~(z,(jz-~), . ..,z,(jz-T),jT-r) @=l*...*m) 
I=1 j=l 

where 

vpp.s (Tiz) = 2 Tvpp8 (iIT jr) (p = 1, . . . . m; i =O.l, . . . . m-l) (2.4 
i=ui+ 1 

From Equations ( 2.5) it follows that 

Q, (r,r) = xi (ilT) - (i=O, 1, . . ..m-1) 

n A 

-2 2 Ed, (iIt, jr) 9[ (zl (i-), . . . , 2, (ir - z), it - r) (2.7) 
I=1 j=l 

where 

m 

%i (ilz> = + 2 CpEi [‘pE - gpE (ilz)l (i=O, 1, . . , m-l) (2.8) 
E=l 

m 

Eil (ilIT, jr) = $ 2 cpEiwpkI (ilzv iz) (i = 0, 1 , . ..( m-l; 1=1, . . . , n) (2.91 

E=l 

& (0) VP,* W) * * 9 yh.5 (L-,r) 

A= . . . . . . . . . . . . . . . . . . . . . . 

V P,s (0) Vpm* (r1t) * * . ‘VP& h,,_,r) 

(2.10) 

and C pFi(e = 1, . ..) /a; i = 0, 1, . ..) 12 - 1) represent the minors of 

the elgments Vp~s(yiT) 'in the determinant (2.10). 

Sutstituting the 

(2.1), t:ie 
Expressions (2.7) found for Qy.;T) in Yquation 

foilowing system of nonlinear equations with respect to the 

unknown functions Z;(T) is obtained: 
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xql (zl (jr - z), . . . , 2, (jr - z), jz - r) +.Z 2 WVZ 09 iz) X 
1=1 j=1 

xq+ (zl (t - fh + jr - z>, . . . , 2, (t - 62 + jt - z),t - 62 + jz - Q 

where 

m-i 

r.~ (4 = gv (0 + 2 % (AT) Xvi tt) (i=l, . . . , r) (2.12) 
i=o 

‘i 

xvi 11) = 1 (1 - TiZ) 2 W,,f (t, jr) (i = 1, . . . , r; i = 0, 1, . , m - 1)(2.13) 
j=u,+1 

In the case where the nonlinear functions yl (I = 1, . . . , n) do not 

depend upon some of the phase coordinates z 
P’ 

the number of the nonlinear 

equations constituting the system (2.11) decreases. If, for instance, the 

functions yz have the form (1.40) then, in agreement with (2.11), the 

following nonlinear relations with respect to the unknown function z,(t) 

are obtained: 
(2114) 

Lo I=1 j=l 

f $j $j wk, (t, jf)$ (zk (t - 62 + jr - z), t - 62 + jt - z) (O<t<ilT) 
I =I j=l 

‘Ihe other phase coordinates will be expressed by the finite sums 

(o<t<m (pz.1, . . . , k-1, k+l, . . . , r) 

The values of the additional external force yS(t) which appear as a 

step function in the intervals of time (yi-r, yi+ r-r) (i = 0, 1, . . . , 

m - 11, in agreement with (2.7) will be I 
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9, (74 = ‘xi (j,z) - 

- 2 22 841 (AT, 0) lCIt (a tjz - Q, jT - z) (i - 0, 1, . . .v m-1) (2.16) 
I=1 jq 

The described method makes it possible to realize the given law of 

motion in the 

number of the 

dimensions of 
filled at the 

m-Jirnensional subspace (t 
Pl’ ***’ 

zP ) , whereupon, if the 

adtlitional external forces (7 S;(t) is’smaller than the 

the subspace, then cornEtionS of type (1.28) will be ful- 
discrete points tl, t2, . . . 

To solve Equations (1.33) or (2.111, on the basis of which, in agree- 
ment with (1.37) and (2.7), the additional external forces q,_(t) are 

determined, it is necessary to use numerical methods [5,6]. ’ 

3. In the very simple case, where only the value of one phase co- 
ordinate zp is assigned, and only one nonlinear function 

9A = $A (Zk (9, t) (3.1) 

appears in the equation of motion, the sdditional external force q,(t) 

must be chosen such that the condition 

zp (h) = rp (3.2) 

is satisfied. 

The Equations (1.30) take now the form 

2, (f) = g, ($14 F,, (f) qe (0) + 

+ 2 W,,O, i~)g,(z,(t--ftJ+i~---Z), t-~62+jT--z) 
j=l 

(O<f<jlT) (v=l,..., r) (3.3) 

js 

where in agreement with (1.31) 

F,, ($1 = 2 w,, ft. iz) (v = 1, . . . , r) 
j=l 

(3.41 

From the last Equation (3.3) it follows that 
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1 
Qs (0) = F,, (id ‘p - iI 

h 

g, W - 2 W,k (ilr, iz) gA (zk (if - f), ir - T) 
1 

(3.5) 
i-1 

Under these conditions, the first group of Equations (3.3) takes on 
the form 

F,, (t) 
‘9 (t) = gy (t) + F,, (jlr) [ 

i, 

rp - s, (id - 3 W,, (jar, jr)9~& (jr---Q, jr---) 

j=l 
I 

+ 

8 

+ x W,,(t, jr)$A(sk(t-tk+jr--), t-tk+jr--) 

j=l 

(0 < t < id (v=i,..., r) 

(3.6) 

In accordance with (3.6) we shall have the following nonlinear rela- 

tion with respect to the unknown function zk(t): 

II 

+ 2 wkk (t$ jr) *A (zk (t - 62 + it - %), t - 6? + jz - r) 

j=l 

(0 < t< iN 

(3.7) 

The remaining phase coordinates .zP (p = 1, . . . , k - 1, k f 1, . . . , r) 
will be expressed by finite sums 

F,, (t) 
j8 

zp (4 = g, (t) + 
F,, (id 

rp - gp tilt) - 2 wph (ilr, it) $\lx tzk (jr - @! ir - z, 1 + 
j=l 

a 

+ 2 W,,(t, jz)g,(z,(t--tk+ iz-fz), t-h+ jr--r) (3.3) 
j=l 

(0 < t < id 

Here q,(t) is yet to be determined. In agreement with (1.29) and (3.5) 

(3.9) 

where 

k8 W = Fps:jll) [rp - g, WI (3.10) 
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The Expression (3.9) determines the additional external force qs( t) 

for the given particular case. 
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