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This paper considers the problem of the choice of the control forces by
means of which one can ensure either the realization of the law of motion
in the phase space (or subspace) of the nonlinear sampled data system or
the passage of the nonlinear sampled data system through predetermined
states at given moments of time.

This paper concerns aspects of the theory of dynamic programming [1]
related to the realization of the chosen strategy of controlling the
motion.

For nonlinear continuous systems, the similar problem was considered
by the author {2} in previous work.

1. The motion of a nonlinear sampled data system can be described by
the following system of nonlinear difference equations:

fi (T) yx = 25 () + ¢; (1) + (1.1)
k=1
0@ Ty T e Yy TYn e e o, T ) =100

Here y, are the generalized coordinates of the system, x.(t) are the
given external forces, g.(t) are the additional external forces for which
the law of variation witﬁ respect to time must be chosen, such that the
prescribed motion will take place. Dy f.,(T) are denoted polynomials in
T the coefficients of which are given %unctions of time, where T repre-
sents the lead operator, defined by the relation

prk = Yr (t -+ HT) (1.2)
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in which 7 1s some constant quantity. The highest degree T of the poly-
nomials f.k(77 (j =1, ..., n) for a given k is represented by m,.

The functions ¥; (j =1, ..., n) on the right-hand side of Equation
(1.1) appear as some nonl1near functions of their arguments. We shall
assume that these functions are continuous with respect to all their
arguments in a closed domain, and satisfy in that domain Lipschitz con-
ditions relative to the arguments

Yo Tyy, - - - Tm‘_lylv « v v Yny Tym ey T Yn

Let us note that the controlled systems, for which the presence of
forces appearing as functions of the error is specified, are also de-
scribed by Equation (1.1). The specified forces are considered as left-
hand sides of Equations (1.1), the nonlinear functions ¥; and the given
external forces xj(t).

Fquations (1.1) can be expressed [3] in the form

T2+ ez =Xo () + Q) + Yo (20 . .., 2, 7) v=1,..,7 (1.3)

k=1
Here

2y = Y 23 = Tyl) ey Iy = Tm'_i?fn Cee g = Tmn_lyn (1-4}

Pyt g (1.5)
OB " B..(t)
Xot)= D g @, 0= 3 3o au(t)
k=1 k=1 (1.6:
o B ()
‘puj (zlr e 2y, t) = Z A,:](t) \Pk (zl’ SRR ] t) (5)' =61’ Tt cﬂ)
k=1
Oy =my, Oy =Mmy+ My ...,00=r (1.7)

and the functions X (¢}, (t) Y (zy, «.., z,, t) for which u # 0,
(L=1, ..., n) are 1dentlcally equal to zero.

In the Expressions (1.6) we have designated by A*(t) the determinant
of the coefficients b, k(t)’ of the 7mkyk(t) in the left-hand sides of
Equations (1.1)

A* (1) = | b (2) | (1.8)

where it has been assumed that this determinant is not identically equal
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to zero. The minors of the elewents b, in the determinants (1.8) are de-
noted by Bkj'

The system of scalar differences (1.3) can be replaced by the matrix
difference equation

2t+1)+al)z@) =X+ Q)+ F (D), - -vr 20,0 (1.9)
where
2(0) =z @], a@ =Jax®], X =]X @]
QW =10 O Y@ ...,z =% 0, .... 20 )] (1.10)

Let us denote by 8(t) the fundamental matrix for the homogeneous
matrix equation

zt+ 1) +a@z(@) =0 (1.11)

The columns of the matrix ©(t) will be linearly independent of the
particular solutions of Equation (1.11). Therefore the matrix 6(t)
satisfies the relation

8t +1)+a@o(@)=0 (1.12)

A solution is sought for the nonlinear matrix equation (1.9) of the
form

z(t) = 0@)x () (1.13)

where x(t) is a column matrix depending upon the given conditions. Sub-
stituting Expression (1.13) into Equation (1.9), we get

e+ DxC+V+a@0@x ) =XO+ Q@) +¥ (2 ()2 (), 1)

or

e+ @ +xC+1D—x@O+a@8@x@®) =
=X+ Q@) +¥Y (@ ...,2%01 (1.14)

Taking relations (1.12) into account, we get

e+ MO =XO+0O+¥YE®....z0,0

from where it follows, that
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M@=+ IXO+OOFYE WO ..., 50,0 (15

where Ay (t) is the first difference of the function y(t), and 67'(¢) re-
presents the inverse matrix of the matrix 8(¢). I'rom (1.15) 1t follows
{4] that

&
x (=0 ¢+ — i) [X (¢ —it)+ Q(t— ir) +

(251

W (g~ i), ., gl — 1), £ it)] + A (D) (ﬁz[—}]) (1.16)

where { represents the fractior #/v and A(t)} is a periodic function of
period T depending on the given conditions. Replacing the index of sum-
mation i by the relatiop i = & - j + 1, the Fxpression (1.16) is trans-
forired to the form

E
X =3 - Xt —tr+jr—D+ QL —~ S jr—71) +
je=t

+ ¥ t—tr+jv—1,...,5 ¢ —0t+ jt—1),t — O+ jr-v)]-b
+ A4 @) {117y

Substituting Expression {1.17) imto (1.13) sives

8
2(8) =3 8() 07 (¢ — v + jOIX (¢~ Ot + /T — 1) + Qt—DrHjr—1)+
+ ¥ (zizlw Pr+jr e~ .., BT+ jr— ), =+ -0+

+ 8(t) 4 (D) (1.18)

Let us now denote by z*(¢t) = || z3(t) | the given matrix, which is de-
termined in the time interval 0 < ¢t < 1 by the law of variation of the
unknown funetions z,{t) (v =1, ..., r) in this (initial) intervai.

In the interval of time 0 < t < 1, the first component on the right-
hand side of relation (1.18) becomes zero. In order that the second com-
ponent on the right-hand side of (1.18) coincide with z*(t) in that
interval of time, it is necessary to choose as a periodic function A(t)
the following function

A() = 871t — O) 2% (¢ — D) (1.19)

With such a choice of the function A(t), relation (1.18) becomes
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2() = 0() 87 (t — O1) 2* (1 — 9v) +
+Ze 8@ 8 ¢— 9t +j)X (-t +jr—1)+Q¢—dt+jr— 1)+
+{171(z1 t—Ot+jr—1),...,5t—0t+jt—1),t — ¥t + ji—1)] (1.20)
Introducing the function
N jo=00@)0r@¢— 9t + j7) (1.21)

which represents the weighting function for the matrix difference equa-
tion (1.11), relation (1.20) can be presented as

2(t) =N (02" (t—01) + 2 Nt /1) X (¢ — 8t + j7 — 1) +
s =1 .
FANEW Q@ —Bt+jr—1)+ DN o)X (1.22)
=t j=1

XY@ (t—t+jr—1,...,¢t—0T+jt—1),t—9%1+jt—1)

The matrix relation (1.22) is equivalent to the matrix difference
equation (1.9), together with the given law of variation of the unknown
functions zv(t) (v=1, ..., r) in the initial interval of time 0 < ¢t <.
Nelation (1.22) is analogous to the matrix integral equation in the con-
tinuous analysis.

Since the functions X (t), Qh(t), Yu(zl(t), cvey 2,.(t), t) for which
w# o (I =1, ..., n) are identically equal to zero, the system of
scalar relations equivalent to the matrix equation (1.22) appears as

r n 8
2y (t) = Z va (t’ O) zk*(t - ’&1") + 2 ZNvai (ty ]T) X
k=1 i=1 j=1
n &
X [Xo(t — 0T + jt — 1) + Qo (¢ — v + jv — V] + D) D) Nug, (¢, jT) X
i=1 j=1
X ¥zt —8v+jr—1),...,5, ¢ =%t +jr—1), t—Br+jr—7)
v=1, ...,7 (1.23)

Let us now introduce the notations
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n

B,(t—08t+jr—r)

W (t; j7) =§1 Nuy & 10 Tog—ge o1 (1.24)
(v=1, ...,r I=1,...,0n)
r n 8
& W =Np L0zt —0) + X X Wut,jO)z t—dt+jr—1)
k=1 l=1j=1
v=1, ..., 1) (1.25)

Substituting Expressions (1.6) for X, , Q; , Y, 1into (1.23), it can
1 1 T

be expressed as

n & n 8
2,(0) =& (&) +2 2 Wa (t, i1 @ (t — 01 4 jT — 1) + X 2 Wa(t, jo)x
1=1j=1 I=1 j=1

XYz t—%+jr—7,...,z¢—%r+jvr—1),t—9t +jT—17)
w=1,...,71) (1.26)

Let us now set the problem of bringing the system at the instant
tl = ]‘11 (1.27)

which is assumed to be a multiple of T, to some given point z, =

r
P
. M 8}
(u=1, ..., m) of the m-dimensional phase subspace (zpl, e 2 ).
n

Let the number of additional external forces at our disposal also be
equal to m and let these forces be g  (t), ..., q, (t).
t n

To solve this problem it is necessary to select some additional ex-
ternal forces g, (t) (: =1, ..., m) such that the conditions
1

zp, (8)) = rp, p=1,..., m (1.28)
are satisfied.

By taking the functions g, (¢) (i =1, ..., m) as step functions, the

i
values of which are unchanged on the interval (0, t,)

qs; (2) = ¢, (0) O<t<y) (=1 ....m (1.29)

it will be found that the phase coordinates z (t) (v =1, ..., r) on the
interval (0, ¢t,) and the unknown values g, (0) i =1, ..., m) will be
1
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determined by the following system of equations:

m n &
Zy (t) = gy (t) +2Fvsi (t) s, (0) -+ 2 2 Wy (¢, jT) X

i=1 l=1 je=}
XP(z (¢ -t +jr— 1, Z(E—8v+jr—17), t—30%t+jr— 1)
O<t<pty (v=1,...,7)

(1.30)
n g
Fo, — &, (10 = 2 Fop (10 0:(0)+ 2 2 Wit (17, j1)x
I=] j==1
X\pl (zl (jT—T), P (jt'- 17), ft"'t) Bp=1..,m
Here Fbs.(t) represents the known functions
1
s
Fo (1) = 2 W (2, j7) (=1, ..., i=1 ..., m) (1.31)

=1

Equations (1.30) can be transformed in the following manner. From the
second group of Equations (1.30 it appears that

m

1 . i .
9s; (O) == m Ksi (}11:) e mzx A?’E“i (hT) X (1.32)

X3 Z W ot T, 7O% (5 T = O, -3 2 (T — D, jT = 7) G=1m)

1==1 j==1
where
prs. (l"lt) Fplgz (]‘11) ot prsm (ilt)
MGT) =] o oo - (1.33)
Foms N0 Fp (00 F omsm 1T
m .
Ko (%) = 2 Apys; (10 (rp, — &p, Vi) ((=1,....m (1.34)
E=1
and A (j;7) (§, i =1, ..., m) is the minor of the elements F§ in
i
the deéermmanr, (1.33). Im:roducmg the notation
by G1%) = gy Ko Ga®) G=t, ... m) (1.35)

m

C i : S i=1, ..., A
Usa (J17, J7) = WE.Z Ap s (W) W (17, 17) (; =1 ... nf;) (1.36)
=1
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the Expression (1.32) can be put in the form

95, (0) = ks, (j17) — (1.37)
L
D22V (W (Gt — 1), oy (v — 1), jr—1) (=1 ..., m
lem o=i

Substituting the fxpressions (1.37) found for 7, (0) into the first

H
group of Iquations {1.30), the following system of nonlinear relations,

relative to the unknown functions zgit) (=1, ..., r) is obtained:
” n N
<ty
) = G (=3 D) Fan (03} U G 9 (0=f<im)
i=1 =1 j=1

X (23 T =), .« ., % (T — ), J'r~—r)+Z‘Esz(t ™% (1.38)

=1 j=

Xy (g t—0t + jr— 1), ..., 2 (t — %t + ]1:~—- ht— Bt +jv—1)

where

"
G, (1) = g () + D) Fus, (&) ks, (1) (v=1, ..., (139
i=1
We notice that, as in [2], the number of equations constituting the
system {1.38) decreases if the nonlinear functions ?l(l =1, ..., n) do
not depend on some phase coordinates z_. If, for instance, in the non-
linear function Tl(l =1, ..., n) there is only one phase coordinate z

=14 (Zk (t)t t) =1, ..., n (1.40)

then, in agreement with (1.38), it will be necessary to solve the follow-
ing nonlinear equation with respect to the unknown function z, (t)

m n i (1.41)
a (8} = Gy ()— D) ; Fos (8) 21 U saliy®, 79 W1 (26 (v — ), v — 1) +

d=1 {==} J==1
+ 2 Z Wi (t, 799 (2 (6 — 07 + jr — 1), t — B+ jr — 7) O<e<him)

=] j=1

The remaining phase coordinates Z5 p=1, ..., k-1 k+1, ..., 1)
will be expressed as finite sums

(1.42)
2, (&) = G, (1) —EZF;::{("')E Usy Gav, JO 41 (2 (8 — 1), Jo — 1) +

i=1i=} j=1
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n 8

+ 0 D W, jO Y (2 (8 — 9T+ jr — 1), t — Ov + jT — 1) 0<t<hm)
1=1j=1
The additional external forces qs.(t) (i =1, ..., m) will then, in

agreement with (1.37), have the foll;wing form:

go, (1) = 44, (0) = Koy (1) — (1.43)
n o
— 2 2 U o 7O (3 (7 — 1), jt — 1) O<e<im) (=1, oum)

1=1 =1
2. Let us now consider the case when the number of additional ex-
ternal forces g, (t) which can be realized in the controlled system is

1
smaller than the order of the phase subspace to a given point of which
the system has to be brought.

Let us assume that there is only one additional external force q (t)
available, the law of variation with time of which has to be chosen such
that conditions (1.28) are satisfied, where in agreement with (1.27)

t; = j;T,and j, 1s some integer.

In order to solve the problem, the interval of time (0, jiT) will be
divided into m equal or unequal subintervals (0, y,7), (y;T, v,7), ...,
(Y1 J17), Where Y1» +++» Yn_) 8re some integers. Let us tage 7,(t)
as a step function and represent its values on each of these subintervals
by qF(Q), 9,(y17), -, 7s(Ym-—1T)’ respectively. Equations (1.26), de-
termining the law of variation of the system, now take the fori:

m—1 e n 8

2z, (t) = &v (t) + Z qs (T‘ir) 1 (t,v'— Tir) Z st (tv ]T) + 2 Zwvl(t,it)x

i=v;+1 I=1j=1
XYz t—OT+j1—1), o, Z, =0T+ jr—1), t—FT+jT—1

O<t<in  (v=1,...,7) (2.1)

where

To =0, 1m =" (2.2)

0 =% + (rii— 9 1 — 1i10) (=01, ..., m—1) (23)
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0 for [0
1(2) ={1 for £>0 (2.4)
Conditions (1.28) take on the form
m--1
_ £ N\ v T7 £ N 4o =\ 1
Tpy — 8p, V) = ié(j) Vpus \Ti0) 45 \TiV) + (2.5)
non
+E Z prl (]'11:’ ]T) q’l (zl (IT - T)’ vy 5y (]T - T)7 ]‘T - T) (P-=1: ’m')
I==1 j=1
where
Yit+1
Vs D) = 20 W, (b0 /1) B=t..mi=04.im—1) (2.6
j=Yi+1

From Equations (2.5) it follows that

g, (%) =% (7)) — (=04, ....m—1)
n g
=2 D B (i )W (2 T—T), . .., 2 (T — ), T — ) (2.7)
=1 j=1
where
=LY ' i =0, 4 —1
% (717) _KZ Cogi [, — 8y, (1)1 (=01, ..., m—1) (2.8)
E=1
- . . 1« .. . 4 ,
Bu (s% J1) =5 D CoWpy (T J1) (=04 com—ti 1=1, ., m) (2.9)
E=1
Vms(O) Vms(Tﬂ) .. Vms(Ym—4”
7 (2.10)
mes 0) pr mv ... mes (Ym—1T)

and C;-i(é =1, ..., m; 1=0,1, ..., m-1) represent the minors of
£

the elements Vp_s(yiT)“in the determinant (2.10),
§

Substituting the Ixpressions (2.7) found for 7 _(y,;7) in Equation
(2.1), tie following system of nonlinear equations with respect to the
unkaown functions z-(7) is obtained:

>
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(2.11)
m—1 n
(0 <t <j17)
)= L= 3 D1, O S jx (G )
i=0 I=1 ji=1
n &
X“pl (zl (]'T - T)» ey 2y (]T - T)v ].T - T) "I"Z Z Wvl (t’ ]‘T)X
l=1 j=1
XPr(z ¢t —Bt4+jv—1), ..., 2, =0t +jT— 1), — %+ jr— 1)
where
m—1
L, () =g () + 2% (4 1 () (=1....n (212
i=0
) =10 —771) X Wit ji) (=1 ....ni=01. m—1)(2.13)
5=Yi+1
In the case where the nonlinear functions y;(l =1, ..., n) do not

depend upon some of the phase coordinates z_, the number of the nonlinear
equations constituting the system (2.11) decreases. If, for instance, the
functions y; have the form (1.40) then, in agreement with (2.11), the
following nonlinear relations with respect to the unknown function z,(t)
re obtained:
are e (2.14)
m—1 i

z (1) = — g }; O Ba (ht, JO W (2 (v — 1), jT — 1) +

n &
AN W, jO (et — Bt +jr— 1), 8 — Ot + jr— 1) O<t<im

The other phase coordinates will be expressed by the finite sums

m—l n
2, (8) =T () — 2 D) Xei (z)Z B (b JO) W (2 (T — 1), jt — O +
A=0 l=1
+22Wp,(t,]'t)\p, (ze(t — Bt +jr— 1), t — Ot + jT — 1)
I=1j=1 (2-15)
0Lt i) (p=1, ..., k—1, k41, ..., 7)

The values of the additional external force q_(t) which appear as a
step function in the intervals of time (y,r, y,4,7) (i =0, 1,
m — 1), in agreement with (2.7) will be
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g, (1:%) = %; (jy7) —

g

— A2 B i W (e T — 1), jr— 1)  (=01,...,m—1) (2.16)

1=1j=1
The described method makes it possible to realize the given law of
rotion in the m-dimensional subspace (zp s Zp ), whereupon, if the
1 n
nunber of the additional external forces g, (t) is smaller than the
1

dimensions of the subspace, then conditions of type (1.28) will be ful-
filled at the discrete points t,, t,,

To solve Fquations (1.33) or (2.11), on the basis of which, in agree-
ment with (1.37) and (2.7), the additional external forces qs_(t) are

determined, it is necessary to use numerical methods [5,6].

3. In the very simple case, where only the value of one phase co-
ordinate zp is assigned, and only one nonlinear function

Pa =P, (2, (2), 2) (3.1)

appears in the equation of motion, the additional external force qs(t)
must be chosen such that the condition

z, (ty) = s (3.2)
is satisfied.
The Fquations (1.30) take now the form

2, () =8, +F, (1) 3, (0) +

8
+ D) Wt Oy (2 ¢ — BT+ jT—1), t—BT+/T—1)
=1
O<t<ht)y (v=1,...,71) (3.3)
B
rp— &p (M%) = Fp, (117) ¢, (0) + 2 Wor (0%, 1) ¥y (3. (v —7), jr—1)
i=1
where in agreement with (1.31)
8
Fou(t)= Dl W, (¢ j7) v="1,..., 7 (3.4)
i=1

From the last Equation (3.3) it follows that
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q 5
9, (0) = T, [rp — 8 (%) — D) Woa (%, J7) ¥y (5 ' — 1), jT— T)] (3.5)

f=c1

Under these conditions, the first group of Equations (3.3) takes on
the form

.( ) i
2, =g, )+ F = F ) [ — 8p (rv) — 2 Wp)‘(h" 1) (3 T — 1), IT—T)]
j=1
8

+ N Wt 109y (5 ¢ — BT+ jT—7), t—BvjTr—71) (3.6)
i=1

O<t<pm (v=1,..., 1)

In accordance with (3.6) we shall have the following nonlinear rela-
tion with respect to the unknown function z,(t):

h

F , , . ,
2 () = g, (1) +T:"(%‘ [r,,— 8y (hT) — DV W (h%, 10 ¥y (5 (T — 1), jo— r)] +
8 j=1
8
+ D Wi (& 79) 9y (3 (¢ — BT jr—7), t— B jr—7) (3.7)
j=1
Ot ir)
The remaining phase coordinates 'p p=1, ..., k=1, k+1, ..., 1

will be expressed by finite sums

Jt

) =g, )+ [rp— 8 (1) — 2 Wia G, 1 s (3 (7 — ), 7 — )] +

Fpg (111) ]':1
8
+ 2 Wt JO by (5 (0 — BT+ jT—1), t—Br+jT—1) (3.8)
j=1

O<t<nv)

Here qs(t) is yet to be determined. In agreement with (1.29) and (3.5)

g, (N =q 0) =k, (J17) — ————(’—1; Z Worlnh® i) Oy (g (jv— 1), jt—1)  (3.9)
ps

0Ot <)

where

1 .
kg (17) = T (0) [rp— 8y (n¥)] (3.10)
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The Expression (3.9) determines the additional external force qs(t)
for the given particular case.

BIBLIOGRAPHY
1. Bellman, R., Dynamic Programming. Princeton Univ. Press, 1957.

2. Roitenberg, la.N., Nekotorye zadachi teorii dinamicheskogo programmi-
rovaniia dlia nelineinykh sistem (Some problems of the theory of
dynamic programming for nonlinear systems). PMM Vol. 26, No. 3,
1962.

3. Roitenberg, Ia.N,, Nekotorye zadachi teorii dinamicheskogo programmi-
rovaniia (Some problems of the theory of dynamic programming). PMM
Vol. 23, No. 4, 1959.

4, Gel’'fond, A.O0., Ischislenie konechnykh raznostei (Calculus of Finite
Differences). Fizmatgiz, 1959,

5. Kantorovich, L.V. and Akilov, T.P., Funktsional’nyi anaeliz v normi-
rovannykh prostranstvakh (Functional Analysis in Normed Spaces).
Fizmatgiz, 1950,

6. Kantorovich, L.V., Nekotorye dal’neishie primeneniia metoda N’ iutona
dlia funktsional’'nykh uravnenii (Some further applications of
Newton’ s method for functional equations). (Vest. Leningr. un-ta,
1957, No. 17, seriia matematiki, mekhaniki { astronomii, vyp. 2,
str. 68-103) Report of the University of Leningrad No. 7, Series
of Mathematics, Mechanics and Astronomy Vol. 2, ppl 68-103, 1957.

Translated by A.V.



